Nonequilibrium Glassy Dynamics of Self-Propelled Hard Disks

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonequilibrium glassy dynamics of self-propelled hard disks.

We analyze the collective dynamics of self-propelled particles in the large-density regime where passive particles undergo a kinetic arrest to an amorphous glassy state. We capture the competition between self-propulsion and crowding effects using a two-dimensional model of self-propelled hard disks, which we study using Monte Carlo simulations. Although the activity drives the system far from ...

متن کامل

The nonequilibrium glassy dynamics of self-propelled particles.

We study the glassy dynamics taking place in dense assemblies of athermal active particles that are driven solely by a nonequilibrium self-propulsion mechanism. Active forces are modeled as an Ornstein-Uhlenbeck stochastic process, characterized by a persistence time and an effective temperature, and particles interact via a Lennard-Jones potential that yields well-studied glassy behavior in th...

متن کامل

Glassy dynamics of athermal self-propelled particles: Computer simulations and a nonequilibrium microscopic theory.

We combine computer simulations and analytical theory to investigate the glassy dynamics in dense assemblies of athermal particles evolving under the sole influence of self-propulsion. Our simulations reveal that when the persistence time of the self-propulsion is increased, the local structure becomes more pronounced, whereas the long-time dynamics first accelerates and then slows down. We exp...

متن کامل

Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.

We present a mode coupling theory study for the relaxation and glassy dynamics of a system of strongly interacting self-propelled particles, wherein the self-propulsion force is described by Ornstein-Uhlenbeck colored noise and thermal noises are included. Our starting point is an effective Smoluchowski equation governing the distribution function of particle positions, from which we derive a m...

متن کامل

Nonequilibrium Statistical Mechanics of Self-Propelled Hard Rods

Using tools of nonequilibirum mechanics, we study a model of self-propelled hard rods on a substrate in two dimensions to quantify the interplay of self-propulsion and excluded-volume effects. We derive of a Smoluchowski equation for the configurational probability density of self-propelled rods that contains several modifications as compared to the familiar Smoluchowski equation for thermal ro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Letters

سال: 2014

ISSN: 0031-9007,1079-7114

DOI: 10.1103/physrevlett.112.220602